Homework 1

due 9/8/08

Problem 1 (Set relationships) For each of the following, determine whether A = B. If not, state whether $A \subset B$, $B \subset A$, or neither. Prove your answers.

a. $A = \{0\}, B = \bigcap_{n=1}^{\infty} \Gamma_n$, where $\Gamma_n = [0, \frac{2}{n}]$ for n = 1, 2, 3, ...b. $A = (0, 1), B = \bigcup_{n=1}^{\infty} \Gamma_n$, where $\Gamma_n = (\frac{1}{n+1}, \frac{1}{n})$, for n = 1, 2, 3, ...c. $A = (\Gamma_1 \times \Gamma_2) \bigcup (\Gamma_3 \times \Gamma_4), B = (\Gamma_1 \bigcup \Gamma_3) \times (\Gamma_2 \bigcup \Gamma_4)$, where $\Gamma_n \subset \mathbb{R}$ for $n \in \{1, 2, 3, 4\}$. d. $A = \{x \in \mathbb{R} : x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}\}, B = \{x \in \mathbb{R} : x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$, and b is an even number} e. $A = \{x \in \mathbb{R} : x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}\}, B = \{x \in \mathbb{R} : x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$, and b is an odd number}

Problem 2 (Convex sets I) Suppose A and B are convex sets in \mathbb{R}^n . Show that $A \cap B$ is also convex.

Problem 3 (Convex sets II) Let A and B be convex sets. Show (by counterexample) that $A \cup B$ need not be convex.

Problem 4 (Mappings I) Let A = (0, 10) and $B = \mathbb{R}$.

a. Give an example of a mapping from A to B which is neither one-to-one nor onto.

b. Give an example of a mapping from A to B which is one-to-one but not onto.

c. Give an example of a mapping from A to B which is bijective.

d. Give an example of a mapping from A to B which is onto but not one-to-one (note: for part d only, you may draw a picture for your answer).

Problem 5 (De Morgan's laws) In class, we showed that for any sets $A_1, A_2, A_3, ..., A_n$,

$$(\bigcup_{i=1}^{n} A_i)^c = \bigcap_{i=1}^{n} A_i^c$$

This is also know as the first of two De Morgan's laws, named for the mathematician and logician Augustus De Morgan (1806-1871). The second of De Morgan's laws says that

$$(\bigcap_{i=1}^{n} A_i)^c = \bigcup_{i=1}^{n} A_i^c$$

Prove the second of De Morgan's laws, (hint: imitate and/or use the proof of the first law from class).

Problem 6 (Mappings II) Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by the rule $f(x) = x^3 - x$.

Prove a-c to be true or false

a. f is one-to-one

b. f is onto

c. f is bijective

d. If you argued statement c to be false (hint: you should have), restrict the domain and/or range of f so that you get a new function $g: A \to B$ where $g(x) = x^3 - x$, $A \subset \mathbb{R}$, and $B \subset \mathbb{R}$ such that g is bijective. Graph g and g^{-1} . Note that there are many possible choices of g. **Problem 6 (Mappings III)** Consider sets A and B, each having a finite number of elements. That is, $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$, for some integers m and n.

- Prove each of the following statements to be either true or false:
- a. If m < n, there exists no function $g : A \to B$ that is one-to-one.
- b. If m < n, every function $g : A \to B$ is onto.
- c. If m = n, every function $g : A \to B$ is one-to-one.
- d. If m > n, there exists a function $g : A \to B$ which is one-to-one.