Homework 5

due 10/6/08

Problem 1 (Continuous functions) (Sundaram, page 72)

$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is continuous at $\frac{1}{2}$ but discontinuous at every other point in its domain. For any $\epsilon > 0$,

$$|f(x) - \frac{1}{2}| = \begin{cases} |x - \frac{1}{2}|, & \text{if } x \text{ is rational} \\ |1 - x - \frac{1}{2}| = |\frac{1}{2} - x| = |x - \frac{1}{2}|, & \text{if } x \text{ is irrational} \end{cases}$$
 (1)

Set $\delta=\epsilon$. Then, $|x-\frac{1}{2}|<\delta$ implies that $|f(x)-f(\frac{1}{2})|<\epsilon$, as required for continuity at $\frac{1}{2}$. For $x\neq\frac{1}{2}$ rational, consider $\epsilon=|\frac{1}{2}-x|$. Then, for any $\delta>0$, consider $y=\min\{\frac{1}{\pi}x+(1-\frac{1}{\pi})\frac{1}{2},\frac{1}{\pi}x+(1-\frac{1}{\pi})(x+\delta)\}$. y is clearly irrational. Moreover, if $x<\frac{1}{2}$, $f(y)>\frac{1}{2}$, while if $x>\frac{1}{2}$, $f(y)<\frac{1}{2}$, and thus $|f(y)-f(x)|>\epsilon$. Thus there exists $\epsilon>0$ such that for all $\delta>0$ at least one element $y\in(x-\delta,x+\delta)$ such that $|f(y)-f(x)|>\epsilon$, and thus f is not continuous at $x\neq\frac{1}{2}$ rational. A nearly identical proof would work for $x\neq\frac{1}{2}$ irrational.

Problem 2 (Sequences) Show that no unbounded sequence $\{x_n\} \subset \mathbb{R}$ converges to a point $p \in \mathbb{R}$

Suppose not. Then $x_n \to p$, for some $p \in \mathbb{R}$. But that x_n is unbounded implies that for any M>0, $|x_n|>M$ for sufficiently large n. Set M equal to $|p|+\epsilon$ for some $\epsilon>0$; then $|x_n-p|>\epsilon$ for all sufficiently large n, contradicting our assumption that $x_n \to p$.

Problem 3 (Derivatives)

- a. Find the derivative of the function $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| at any point $x \in (-\infty, 0) \cup (0, \infty)$, and show that the function is not differentiable at 0.
 - b. Show that the function $g: \mathbb{R} \to \mathbb{R}$, g(x) = x|x| is differentiable for all $x \in \mathbb{R}$. What is the derivative?

Problem 4 (Continuity and inverse images) (Sundaram, page 71)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function. Show that the set

$$\{x \in \mathbb{R}^n : f(x) = 0\}$$

is a closed set.

Let $B \subset \mathbb{R}$ be any closed set. Then, B^c is open, and so

$$f^{-1}(B^{c}) = f^{-1}(\mathbb{R} - B)$$

$$= f^{-1}(\mathbb{R}) - f^{-1}(B)$$

$$= \mathbb{R}^{N} - f^{-1}(B)$$
(2)

is open, and thus $f^{-1}(B)$ is closed, as desired (two of these steps are glossed over, try to show them yourselves).

Problem 5 (lim inf, lim sup) (Sundaram page 68) Find the lim sup and the lim inf of each of the following sequences:

a.
$$x_n=(-1)^n, \ n=1,2,3,...$$
 $\limsup x_n=1, \ \liminf x_n=-1$ b. $x_n=(-1)^n+\frac{1}{n}, \ n=1,2,3,...$ $\limsup x_n=1, \ \liminf x_n=-1$ c. $\{1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,...\}$ $\limsup x_n=\infty, \ \liminf x_n=1$ d. $x_n=1$ is n is odd, and $x_n=-\frac{n}{2}$ if n is even $\limsup x_n=1, \ \liminf x_n=-\infty$

Problem 6 (Derivatives II) Find the derivative of each of the following functions with domain and codomain \mathbb{R} , from the definition of derivative¹:

a.
$$f(x) = 2x^3$$

The derivative of f at x is m satisfying $\lim_{h\to 0}\frac{r(h)}{h}$, where

$$\frac{r(h)}{h} = \frac{2(x+h)^3 - 2x^3 - mh}{h}$$

$$= \frac{2x^3 + 6xh^2 + 6x^2h + 2h^3 - 2x^3 - mh}{h}$$

$$= 6xh + 6x^2 + 2h^2 - m$$
(3)

and so $\lim h \to 0$ $\frac{r(h)}{h} = 6x^2 - m$. Conclude that the derivative of f is $f'(x) = 6x^2$.

b.
$$f(x) = 12x^{-2}$$

The derivative of f at x is m satisfying $\lim_{h\to 0}\frac{r(h)}{h}$, where

$$\frac{r(h)}{h} = \frac{12(x+h)^{-2} - 12x^{-2} - mh}{h}$$

$$= \frac{\frac{12}{x^2 + 2xh + h^2} - \frac{12}{x^2} - mh}{h}$$

$$= \frac{\frac{-24xh - 12h^2}{x^2(x+h)^2} - mh}{h}$$

$$= \frac{-24x - 12h}{x^2(x+h)^2} - m$$
(4)

and so $\lim_{h \to 0} h \to 0$ and $\lim_{h \to 0} h \to 0$. Conclude that the derivative of f is $f'(x) = -24x^{-3}$.

b.
$$f(x) = 3x + 2$$

Problem 7 (Taylor expansions I)

- a. Approximate the function $f(x) = e^x$ around x = 0 with separate Taylor expansions of degrees 1,2, and 3 (you may use without proof the fact that $f^{(n)}(0) = 0$ for all n). Call these $g_1(x)$, $g_2(x)$, and $g_3(x)$.
- b. Calculate the interval over which $g_i(x)$ is no more than 10% away from f(x), that is, in which $\frac{g_i(x)-f(x)}{f(x)} \leq .1$, for i=1,2,3 (you can approximate this with the help of a computer if necessary).
 - c. Repeat parts a and b for $f(x) = \ln(x)$ (you need not prove what $f^{(n)}(x)$ is).
 - d. Repeat parts a and b for $f(x) = \sqrt{x+1}$ (you need not prove what $f^{(n)}(x)$ is).

Problem 8 (Taylor expansions II)

¹The point of this problem is to demonstrate comfort working with the definition. Do not simply write out what the derivative is.

Suppose you needed to calculate $4.2^{\frac{3}{2}}$ without using a computer. Show that this is possible via a first degree Taylor series expansion of $f(x) = x^{\frac{3}{2}}$ about x = 4. How close is your approximation to the actual value?