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Homework 8
due 11/10/08

Problem 1 (Constrained optimization I) (Sundaram, page 168)

Solve the following maximization problem:

maximize log(x) + log(y)

subject to x2 + y2 = 1

x ≥ 0, y ≥ 0

The constraint set is closed and bounded and the objective function is continuous. However, the objective

function is not defined on {x ∈ R2 : x = 0 or y = 0}, so the Weierstrass theorem cannot be applied directly.

Note that the objective function tends to −∞ as x → 0 or y → 0. Thus there is some ε > 0 such that the

solution to the above problem is the same as the solution to a modified problem with the inequality constraints

replaced by y ≥ ε, x ≥ ε; this modified problem clearly has a solution by the Weierstrass theorem. Apply the

theorem of Lagrange to maximize the objective function over R2
⋂
{x ∈ R2 : x2 + y2 − 1 = 0}. The constraint

qualification is met at all (x, y) 6= (0, 0), which is not in the constraint set. Thus, the solution to the problem

appears as a point satisfying (
1
x
1
y

)
= λ

(
2x

2y

)
x2 + y2 = 1

for some λ. There is only one such point, x = y = 1√
2

.

Problem 2 (Constrained optimization II) (Sundaram, page 168)

A firm produces two outputs y and z using a single input x. The set of attainable output levels H(x)

from an input use of x is given by

H(x) = {(y, z) ∈ R2|y2 + z2 ≤ x}

The firm has available to it a maximum of one unit of the input x. Letting py and pz denote the prices

of the two outputs, determine the firm’s optimal output mix.

We are to choose (x, y, z) to maximize pyy + pzz over H(x), subject to 1 ≥ x ≥ 0. First, as the objective

function is monotonic, the solution to the above problem is the same as that of maximizing the objective function

over H̃(x) = {(y, z) ∈ R2 : y2 +z2 = x}. Second, the monotonicity of the objective function immediately implies

that the optimal choice of x is 1. The set {(y, z) ∈ R2 : y2 + z2 = 1} is closed and bounded, while the objective

function is continuous, so a maximum exists by the Weierstrass theorem. Apply the theorem of Lagrange to

maximize pyy + pzz over R2
++

⋂
{(y, z) ∈ R2 : y2 + z2 = 1}. The constraint qualification is met everywhere

over this set. We check both the points at which the derivative of the objective function is proportional to the

derivative of the constraint function y2 + x2 − 1 and the boundaries of the constraint set. The former are found

at points (y, z) satisfying (
py

pz

)
= λ

(
2y

2z

)
y2 + z2 = 1
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for some λ. There is one such point, y = 1√
1+
(

pz
py

)2
, z = 1√

1+( py
pz

)2 . There are two points on the boundary of the

constraint set, y = 1, z = 0 and y = 0, z = 1. It is straightforward, though tedious, to verify that the objective

function is maximized among these three points at the first point. Conclude that y = 1√
1+
(

pz
py

)2
, z = 1√

1+( py
pz

)2

is the solution to the original problem.

Problem 3 (Constrained optimization III) (Sundaram, page 169)

A consumer has income I > 0 and faces a price vector p ∈ R3
++ for the three commodities she consumes.

All commodities must be consumed in nonnegative amounts. Moreover, she must consume at least two units

of commodity 2, and cannot consume more than one unit of commodity 1. Assuming I = 4 and p = (1, 1, 1),

calculate the optimal consumption bundle if the utility function is given by u(x1, x2, x3) = x1x2x3. What

if I = 6 and p = (1, 2, 3)? Let h1 = x1, h2 = x2 − 2, h3 = x3, h4 = 1 − x3, h5 = I − p1x1 − p2x2 − p3x3.

We are asked to maximize x1x2x3 s.t. hi ≥ 0, i = 1, 2, 3, 4, 5. First, note that the constraint set is closed and

bounded, and the objective function continuous, so a solution to this problem exists by the Weierstrass theorem.

Second, note that constraints h1 and h3 will not bind at the optimum so long as 2p2 < I. If either binds, the

objective function is zero, and it is clear that positive utility can be achieved with x2 = 2 and x1 > 0, x3 > 0.

Third, note that the derivatives of h2, h4, and h5 are linearly independent given positive prices, so the constraint

qualification is satisfied. Applying the Kuhn-Tucker theorem, there exist λ2, λ4, and λ5 such that the following

hold at the constrained maximum:

λ2 ≤ 0, λ2[1− x1] = 0, 1 ≥ x1

λ4 ≤ 0, λ4[x2 − 2] = 0, x2 ≥ 2

λ5 ≤ 0, λ5[I − p1x2 − p2x2 − p3x3] = 0, I ≥ pqx1 + p2x2 + p3x3
x2x3

x1x3

x1x2

 = λ2


−1

0

0

+ λ4


0

1

0

+ λ5


−p1

−p2

−p3


This system of equalities and inequalities has two solutions: x1 = x3 = 0, x2 ∈ [2, 4], λ2 = λ4 = λ5 = 0; and

x1 = 1, x2 = 2, x3 = 1, λ2 = 0, λ4 = −1, λ5 = −2. Clearly, the objective function is larger when evaluated at

the latter. Conclude the problem’s solution is then x1 = x3 = 1, x2 = 2.

Problem 4 (Constrained optimization IV) (Sundaram, page 169)

Let T ≥ 1 be some finite integer. Solve the following maximization problem:

maximize
T∑

t=1

(
1
2

)t√
xt

subject to
T∑

t=1

xt ≤ 1

xt ≥ 0, t = 1, 2, ..., T

A solution to the problem clearly exists by the Weierstrass theorem. As the objective function is monotonically

increasing in each of its arguments, the first constraint will hold with equality. The inequality constraints will

not bind at the optimum (why not?). Thus, apply the theorem of Lagrange to maximize the objective function
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over RT
++

⋂
{x ∈ RT :

∑T
t=1 xt = 1}. The constraint qualification trivially holds, so the optimum will solve the

following system for some λ: 
1

2
√

x1

1
4
√

x2

...
1

2T
√

xT

 = λ


−1

−1

...

−1


which yields xt = 1

4t−1x1, t = 2, 3, ..., T . Thus,
∑T

t=1 xt = 1 ⇒
∑T

t=1
1

4t−1xt
= 1, so that xt = 3

4(1−( 1
4 )T )

,

t = 1, 2, ..., T .

Problem 5 (Constrained optimization V)

Consider the following maximization problem:

maximize α log(x1) + (1− α) log(x2)

subject to p1x1 + p2x2 ≤ I, x ≥ 0, y ≥ 0 (1)

p1, p2, and I are unknown parameters, and are all strictly positive.

a. Solve the problem by applying the Kuhn-Tucker theorem; be sure to include all three inequality

constraints.

b. Solve the problem again by applying the theorem of Lagrange, according to the following outline: first,

argue that the first constraint, p1x1 +p2x2 ≤ I, must hold with equality at any maximum. Second, apply the

theorem of Lagrange to maximize α log(x1) + (1− α) log(x2) over R2
++

⋂
{(x1, x2) ∈ R2 : p1x1 + p2x2 = I}.

Third, check the value of the objective function at the “endpoints,” ( I
px
, 0) and (0, I

py
). This should give you

sufficient justification to claim that you have solved the problem. Argue that your answer is the same as in

part a., where you used the Kuhn-Tucker theorem.


