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Homework #3

answers

Problem 1 Let T be some finite integer. Solve the following maximization problem:

max
{xt}

T∑
t=1

√
xt subject to

T∑
t=1

xt ≤ 1,

xt ≥ 0, t = 1, 2, ..., T

Note that this is exactly a CES utility maximization problem with all prices and income set to 1.

Therefore, we have:

x1 = x2 = ... = xT =
1

T

Problem 2 A consumer has income I > 0 and faces prices (p1, p2, p3) for the three goods she consumes. Her

utility function is u(x1, x2, x3) = x1x2x3. All goods must be consumed in nonnegative amounts. Furthermore,

she must consume at least 2 units of good 2, and cannot consume more than 1 unit of good 1.

a. Assuming I = 4 and (p1, p2, p3) = (1, 1, 1), calculate her optimal consumption bundle.

If the consumer can purchase any bundle she wants, she would choose x1 = x2 = x3 = 4
3 . As this

violates the constraint that x1 ≤ 1, apply the Kuhn-Tucker theorem, treating x1 +x2 +x3 = 4 as an equality

constraint, and x1 ≤ 1 and x2 ≥ 2 as an inequality constraint. Ignore nonnegativity constraints xi ≥ 0, as

they are clearly not going to bind. The necessary conditions for a max are given by
x2x3

x1x3

x1x2

 = λ1


1

1

1

 + λ2


0

−1

0

 + λ3


1

0

0


x1 + x2 + x3 = 4, λ1 ≥ 0

λ2(2− x2) = 0, λ1 ≥ 0, x2 ≥ 2

λ3(x1 − 1) = 0, λ1 ≥ 0, λ3 ≤ 1

Suppose x2 > 2. Then λ2 = 0, which implies x3 = x2, which is impossible if x2 > 2. Conclude x2 = 2 in any

solution to the above equations. Suppose x1 < 1. Then λ3 = 0, which implies x1 = x3, which is inconsistent

with x1 < 1, x2 = 2 and x1 + x2 + x3 = 4. Conclude that x1 = 1 in any solution. Evidently, then, the

solution to the above system is (x1, x2, x3, λ1, λ2, λ3) = (1, 2, 1, 2, 1, 0). As the constraint qualification is

satisfied and as the maximization problem clearly has some solution, the consumer maximizes her utility at

(x1, x2, x3) = (1, 2, 1).

b. Now assume I = 6 and (p1, p2, p3) = (1, 2, 3, ). What is her optimal consumption bundle?

A similar setup to part a tells us that the constraints x1 ≤ 1 and x2 ≥ 2 will bind with equality. The

utility-maximizing bundle is at (x1, x2, x3) = (1, 2, 13 ).

Problem 3 Your ship is overdue in port and the beer is running out. The remaining supplies are divided up

and you get 22.5 liters. The ship will not reach port before tomorrow morning, and there is a 60% chance
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that it will arrive then. You can’t take beer with you when you leave the ship, so you could drink it all

today, to make sure it isn’t wasted. On the other hand, there is a 40% chance that you will still be afloat

all day tomorrow, and a 10% chance that you will be afloat the day after that. You could save some beer in

case you need it for the second day, or the third. It is certain you will reach port before the fourth day.

You are an expected utility maximizer, and your utility is 6000B− 250B2, where B is liters of daily beer

consumption. How much beer should you drink today? How much should you save for tomorrow? For the

day after tomorrow? (hint: your answers should be round numbers)

Setup the problem as maxB1,B2,B3
u1 + .4u2 + .1u3 subject to the constraint B1 +B2 +B3 = 22.5. Solve

using standard methods to get B1 = 11, B2 = 9.5, and B3 = 2.

Problem 4 Define f : R2 → R by f(x, y) = ax2 + by2 + 2cxy + d. For what values of a, b, c, and d is f a

concave function?

As f is a polynomial, it is a C2 function, and so the second derivative test for concavity is necessary and

sufficient. Specifically, we need D2f to be a n.s.d. matrix at all (x, y) ∈ R2, where

D2f(x, y) = 2

[
a c

c b

]

This is a n.s.d. matrix so long as a ≤ 0, b ≤ 0, and ab− c2 ≥ 0.

Problem 5 A firm produces an output y using two inputs x1 and x2 as y =
√
x1x2. Union rules obligate

the firm to use at least one unit of x1 in its production process. The input prices of x1 and x2 are w1 and

w2, respectively. Assume that the firm wishes to minimize the cost of producing y unites of output.

a. Set up the firm’s cost-minimization problem. Is the feasible set closed? Compact? Convex?

The firm’s cost-minimization problem is given by

min
x1,x2

w1x1 + w2x2 subject to
√
x1x2 ≥ y (1)

x1 ≥ 1

The constraint set is closed and convex, but not bounded. However, any (x̃1, x̃2) pair satisfying both

constraints costs at least as much as the cheapest input combination which yields y output, and so the

constraint set can be further restricted to {(x1, x2) :
√
x1x2 ≥ y, x1 ≥ 1, w1x1 +w2x2 ≤ w1x̃1 +w2x̃2}, which

is closed, bounded, and convex (this is identical to an argument seen in class, and may be best understood

by drawing a picture).

b. Describe the Kuhn-Tucker first-order conditions. Are they sufficient for a solution? Why or why not?

Consider the minimization problem (??). Apply Sundaram theorem 7.16. To make the problem fit the

theorem, we’ll maximize the function −w1x1 − w2x2. The objective function is concave (by virtue of being

linear). The constraint function
√
x1x2 − y is also concave (can check with second derivative condition;

already proven as an example in class). Therefore, the K-T conditions are sufficient for a minimum, and the

constraint qualification is irrelevant (clearly, there are many points such that the constraint holds strictly).
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The Kuhn-Tucker conditions are given by:[
w1

w2

]
= λ1

 1
2

√
x2

x1

1
2

√
x1

x2

 + λ2

[
1

0

]

λ1(
√
x1x2 − y) = 0,

√
x1x2 ≥ y, λ1 ≥ 0

λ2(x1 − 1) = 0, x1 ≥ 1, λ2 ≥ 0 (2)

Clearly, the first constraint binds with equality, as otherwise λ1 = 0, which is inconsistent with the gradient

condition (had the problem not specifically asked for K-T conditions, you would have been better off reducing

it to an equality-constrained problem first).

Consider two cases. One, x1 > 1. Then, λ2 = 0, and the solution is clearly given by

x1 = y

√
w2

w1
, x2 = y

√
w1

w2
(3)

with cost function c(w, y) = 2y
√
w1w2.

Now consider the case where x1 = 1. Then x2 = y2, and c(w, y) = w1 + w2y
2.

The first case is relevant if

x1 = y

√
w2

w1
> 1

and so the complete cost function is

c(w, y) =

 2y
√
w1w2 if y

√
w2

w1
≥ 1

w1 + w2y
2 if y

√
w2

w1
< 1

(4)


