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Abstract

I derive a formula for the minimum cost savings that would offset the incentive to increase

price created by a merger, when differentiated firms compete in quantities. The formula depends

only on pre-merger information on margins and demand slopes, and is invariant to demand and

cost curvature. The paper then develops an algorithm to infer demand slopes – and thus allow

calibration of parameterized demand and cost curves – from pre-merger data. While the Cournot

model of quantity competition is commonly accompanied by an assumption that rivals’ products

are interchangeable, the inflexibility of this assumption and its implications opens the model to

criticisms. The paper examines the advantages of relaxing the assumption of interchangeability,

in particular greater consistency with pre-merger data, greater scope for profitable mergers, and

greater flexibility in merging firms’ cost curves. An extended numerical example illustrates the

application of a differentiated Cournot model to a hypothetical industry.
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1 Introduction

Consider an industry in which firms produce differentiated substitutes, and compete a la Cournot

by choosing quantities. A merger generically changes the incentives of each merging firm, in that the

firm internalizes the negative effect of additional production on the profit of its former rival, and thus

optimally decreases its quantity. Should the merger reduce the costs of one or both merging firms,

this incentive may be offset to some extent by the now-greater profit margin associated with each sale.

In this paper, I derive the minimum cost savings that would completely offset the change in incentive

created by the merger when differentiated firms compete in quantity. In keeping with the literature, I

refer to this metric as Compensating Marginal Cost Reduction (“CMCR”).

CMCR depends on pre-merger margins, prices, and demand slopes, but is invariant to assumptions

on curvature of demand and cost curves. While prices and margins are commonly observable by

researchers and practitioners, information on demand slopes may or may not be available. Thus, I

also provide a method for calibrating the necessary demand slopes from pre-merger information on

margins and diversion ratios. The resulting calibration additionally enables simulation of post-merger

prices based on both the calibrated demand slopes and assumptions about the curvature of demand

and cost curves away from the pre-merger equilibrium.

I then use merger simulation tools to compare the differentiated Cournot model to the more

commonly-used homogeneous Cournot and differentiated Bertrand models. In contrast to the homo-

geneous Cournot model, I show that the differentiated Cournot model can flexibly match per-merger

information on margins, thus more plausibly explaining the pre-merger equilibrium. Further, mergers

of differentiated Cournot firms appear to be more profitable than mergers of homogeneous Cournot

firms, suggesting that the differentiated Cournot model may better capture the incentive to merge.

I provide evidence that mergers of differentiated Cournot competitors can result in greater price in-

creases than comparable mergers of Bertrand competitors, but note that this result is not universal.

Finally, I provide evidence that when differentiated firms compete in quantities, capacity constraints

on merging firms mitigate price effects, while capacity constraints on nonmerging firms exacerbate

them, with the former effect being relatively more important.

The industrial organization literature has studied models of differentiated firms competing in quan-

tities for decades. Singh and Vives (1984) argue that when products are differentiated, competition

in quantities renders the market “more monopolistic” – and thus higher-priced – than would compe-

tition in prices. This result is generalized by Vives (1985), Okuguchi (1987), and Qiu (1997), and

limited by Qiu (1997), Häckner (2000), and Alipranti et al. (2014). As noted by Vives (1985), the

intuition for why Cournot industries tend to have higher prices is that when a Cournot firm sets price,

it reasons that its rivals will respond to a higher price by increasing their prices (so as to maintain a
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constant quantity). In contrast, when a Bertand competitor sets its price, it reasons that each rival will

not adjust price in response. Hence, the Cournot competitor has an additional incentive to increase

price, relative to the Bertrand competitor. This intuition is further unpacked in a numerical example

in section 2.

While the literature has extensively studied the relationship between mode of competition and

outcome, comparatively little is known about how mode of competition and degree of differentiation

affect merger outcomes. For example, Nocke and Whinston (2021) assess the effectiveness of con-

centration screens as described in the FTC/DOJ Horizontal Merger Guidelines, finding that change

in the Herfindahl index is a reasonable proxy for merger price effects both when homogeneous firms

compete in quantities and when differentiated firms compete in prices.

The lack of attention paid to the antitrust implications of the differentiated Cournot model in the

academic literature appears to reflect the practices of antitrust practitioners. For example, the FTC

employed homogeneous Cournot models in two recent merger challenges: Tronox/Cristal1 (involving

titanium dioxide), and Peabody/Arch2 (involving coal mined in the South Powder River Basin). Pri-

vate litigants have employed the homogeneous Cournot model (albeit unsuccessfully) in at least two

litigated antitrust challenges.3 Numerous antitrust matters have involved markets involving differenti-

ated goods in which firms appear to compete by setting prices,4 or by bargaining over price with large

customers.5 In contrast, I am not aware of an instance in which either plaintiffs or defendants argued

that firms competed in quantities of differentiated goods.

Antitrust practitioners should reconsider the differentiated Cournot model. As Davis (2002) ob-

serves, while practitioners seem to default to Bertrand models when they believe products to be dif-

ferentiated,and Cournot models when they believe products to be homogeneous,this default choice

seems to be based on largely technical motivations and analytical tractability, and not necessarily in-

formation about the underlying mode of competition. As Eaton and Lipsey (1989) note, “any set of

commodities closely related in consumption and/or in production may be regarded as differentiated

products.” A review of antitrust authority documents suggests that customers rarely – if ever – regard

even quite similar products made by different producers as literally interchangeable, due to actual or

1See FTC v. Tronox Limited et al., Case No. 1:18-cv-01622 (D.D.C 2018).
2See FTC v. Peabody Energy Corp., Case No. 4:20-cv-00317-SEP (E.D.Mo 2020).
3See Concord Boat Corp. v. Brunswick Corp., 207 F.3d 1039 (8th Cir. 2000) and Heary Bros. Lightning Prot. Co. v.

Lightning Prot. Institute, 287 F. Supp. 2d 1038 (D. Ariz. 2003).
4See FTC v. Whole Foods Market, Inc., 502 F. Supp.2d 1, 39 (D.D.C.2007) (describing how supermarkets, organic

and otherwise, compete through differentiation and prices).
5See Hanner et al. (2016) (describing a bid model used by the FTC when litigating the Sysco/US Foods merger); FTC

v. Wilhelmsen and Drew, Civil Action No. 18-cv-00414-TSC, 44 (D.D.C. 2018) (describing a merger simulation model

used by the FTC’s expert).
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perceived differences in product quality, product type, location, or service.6

The theoretical literature offers additional support for the differentiated Cournot model. Salant

(1986) argues that in many industries firms commit to a choice of quantity before price is set, e.g.

due to lags in production, with prices set after production decisions are sunk so as to equate supply

and demand. Kreps and Scheinkman (1983) argue that even when firms do appear to set prices in

accordance with the Bertrand model, if the same firms first commit to quantities then outcomes match

those of a Cournot model.7 Shapiro (1989) contains an extended discussion of types of industries

to which the Bertrand and Cournot models may apply. The differentiated Cournot model is most

applicable to industries in which firms make strategic and lumpy decisions as to how much to produce,

with prices being set later so as to equalize supply and demand.Examples of such industries may

include semiconductor products, advertising, or commodity products like cement, oil, or chemicals.

“Standard” homogeneous Cournot models impose a relatively rigid form of competition that im-

plies at least two potentially problematic results. First, homogeneous Cournot models imply that share

is proportional to margin, meaning that if firm A has twice the share of firm B, firm A’s price-cost

margin cost must be twice that of firm B’s. Defendants in Tronox/Cristal and Arch/Peabody attacked

the FTC’s modeling because in their view accounting margins did not match this pattern.8 In a non-

merger matter in private litigation, the court excluded the plaintiffs’ Cournot model, and consequently

their expert’s entire report, on the basis of plaintiffs’ use of a Cournot model that assumed firms with

different shares had identical marginal costs.9 In contrast, the differentiated Cournot model is con-

sistent with a variety of shares and margins. As Werden (2010) points out, the “key test of a model

used to predict the likely unilateral price effects of a merger is how well the model explains premerger

pricing.” The differnetiated version of the Cournot model can flexibly match pre-merger margins,

while the “standard” homogeneous Cournot model cannot.

As has been pointed out by authors including Salant, Switzer, and Reynolds (1983) and Perry

and Porter (1985), homogeneous Cournot models generally predict mergers to be unprofitable unless

6See the FTC’s complaint in Tronox (supra note 1) at 12, describing the perceived “inferior quality” of titanium dioxide

imported from China; the FTC’s complaint in Peabody/Arch (supra note 2) discussing the unique “characteristics” and

“quality” of coal from the Southern Powder River Basin.
7While the analysis of Kreps and Scheinkman (1983) considered homogeneous products, as Eaton and Lipsey note the

analysis clearly applies with equal force to differentiated products.
8See Peabody Opinion, supra note 2, at 62, “Defendants object to Dr. Hill’s applications of the Cournot model on

a number of grounds, [including] that his model’s predicted margins do not match observed margins.”; Tronox Opinion,

supra note 1, at 33, “(Defendants] contend[] that [...] use of the Cournot model is not appropriate and leads to results that

are inconsistent with market realities.[...] Chemours’ marginal cost of producing TiO2 is, according to the model, “more

than [redacted] lower than the “actual” marginal cost as measured by Dr. Hill.”
9See Heary Bros. opinion, supra note 3.
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merging firms have sufficiently convex costs. In litigation, defendants in the Tronox/Cristal matter

attacked the perceived unprofitability of the merger under the FTC’s Cournot as deligitimizing the

entire model.10 For this reason, antitrust practitioners employing the homogeneous Cournot model

often assume quadratic costs. In contrast, constant marginal costs present no particular difficulty

under differentiated Cournot competition, and mergers in the differentiated Cournot model are more

likely to be profitable than mergers involving homogeneous Cournot competitors. While there are

important applications in which firms may be best conceptualized as having increasing marginal costs,

researchers and practitioners may have little insight into the cost structure of a particular firm. Hence,

an assumption of constant marginal cost – essentially, that firms can replicate their production process

in expanding production for marginal units – is often attractive, but is all but precluded under the

homogeneous Cournot model.

While merger efficiencies are a topic of considerable interest to policymakers,11 both the theoreti-

cal and empirical literature on merger efficiencies is thin. Notable exceptions include Werden (1996)

and Froeb and Werden (1998), which derive comparable CMCR metrics for differentiated Bertrand

competition and homogeneous Cournot competition, respectively. The Werden (1996) and Froeb and

Werden (1998) CMCR metrics are commonly used by antitrust practitioners,12 both because of their

direct relevance to antitrust questions and because they require few assumptions, e.g. on demand and

cost curvature. My paper establishes a comparable CMCR metric for settings in which competition

is differentiated in quantities.

Section 2 develops a numerical example illustrating key differences between Bertrand and Cournot

competition, and demonstrating the application of CMCR. Section 3 derives the differentiated Cournot

CMCR. Section 4 discusses calibration of differentiated Cournot demand systems and merger simu-

lation. Section 5 applies differentiated Cournot modeling to a hypothetical industry, and compares the

differentiated Cournot model to the “standard” Cournot and Bertrand models. Section 6 concludes.

2 Numerical example

This section contains a numerical example that demonstrates the distinction between Bertrand

and Cournot modes of competition among producers of differentiated products, the application of

CMCR, and how CMCR varies by mode of competition. While both Bertrand and Cournot CMCR

are invariant to demand and cost curvature, it is helpful to work with particular functional forms to

easily allow calculation of merger price effects. In particular, throughout this section assume that two

10See Tronox Opinion, supra note 1, at 33.
11See Wilson (2020).
12See Greenfield et al. (2019) for a discussion of CMCR as used in the Tronox/Cristal litigation.
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firms produce differentiated products at constant marginal cost ci, with demand for products 1 and 2

given by:

q1 = 10− p1 + 1
2
p2

q2 = 10− p2 + 1
2
p1

(1)

Bertrand
The Bertrand solution follows directly from the two firms’ first-order conditions for profit maxi-

mization in pi:

p1 =
20
3
+ 8

15
c1 +

2
15
c2 p2 =

20
3
+ 8

15
c2 +

2
15
c1

q1 =
20
3
− 7

15
c1 +

2
15
c2 q2 =

20
3
− 7

15
c2 +

2
15
c1

Cournot
The Cournot solution, in which firms choose quantities, can be calculated in one of two equivalent

ways. First, the demand system (1) can be inverted, and thus expressed with prices as the dependent

variables. Using p and q to represent 2×1 price and quantity vectors, A to represent a 2×1 vector of

intercepts, and B to denote a 2× 2 matrix of coefficients, we can rewrite system (1) as q = A−Bp.

It then follows that p = B−1A−B−1q, or:

p1 = 20− 4
3
q1 − 2

3
q2

p2 = 20− 4
3
q2 +

2
3
q1

(2)

Given system (2), the Cournot solution is easily obtained from the two firms’ first-order conditions

for profit maximization in qi, and is given below in expression (3).

p1 = 8 + 7
15
c1 +

2
15
c2 p2 = 8 + 7

15
c2 +

2
15
c1

q1 = 6− 2
5
c1 +

1
10
c2 q2 = 6− 2

5
c2 +

1
10
c1

(3)

An alternative method for obtaining the Cournot solution, described in Jaffe and Weyl (2013), is

less direct, but perhaps more illustrative of the difference between the Bertrand and Cournot modes

of competition. While Cournot competition is traditionally defined by firms choosing quantity and

Bertrand competition by firms choosing price, this is not the essential distinction between Bertrand

and Cournot competition. In fact, given the one-to-one mapping between price and quantity defined

by a firm’s demand curve the distinction is entirely artificial. Instead, what distinguishes the two

modes of competition is how firms expect their rivals to react to a change in either price or quantity.

Under Bertrand competition, a firm contemplating increasing its own price reasons that its rivals will

hold price steady in response but will let quantity adjust as needed. Under Cournot competition, such

a firm reasons that its rivals will increase price in response, so as to maintain their quantities at a

constant level.
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It follows that the Cournot solution can be obtained by allowing firms to optimize in prices, but

with conjectures that rivals’ prices will adjust to own price changes so as to hold steady rivals’ quan-

tities. In the two-firm oligopoly described by system (1), firm i chooses pi so as to maximize profits,

given a belief that firm j will adjust pj so that qj(pj(pi), pi) = Kj , where Kj is firm j’s constant

quantity. Then, firm i’s profit-maximization problem is:

max
pi

(10− pi +
1

2
pj)(pi − ci) subject to: Kj = 10− pj +

1

2
pi (4)

Solving the constraint for pj , inserting it into the objective function, and solving produces two

first-order conditions: pi = 10− 1
3
Kj . Combining these first-order conditions with the two constraints

yield a system of four linear equations in four unknowns. It is direct that the solution to this system is

given by equation (3) above.

Monopoly
Following a hypothetical merger of firms 1 and 2, the monopoly solution does not depend on mode

of competition. This is because the distinction between Bertrand and Cournot – how rivals are thought

to react to a change in price – collapses under monopoly. Using standard techniques, the monopoly

solution is:

p1 = 10 + 1
2
c1 p2 = 10 + 1

2
c2

q1 = 5− 1
2
c1 +

1
4
c2 q2 = 5− 1

2
c2 +

1
4
c1

(5)

Constant marginal cost reduction (CMCR)
CMCR gives the reduction in costs necessary to maintain pre-merger pricing following a merger.

CMCR is independent of demand curvature, and thus applies to the linear demand example here. To

demonstrate the use of CMCR, suppose ci = 10, i = 1, 2, so that symmetric equilibria obtain. Then,

the Bertrand duopoly price is 40
3

, the Cournot duopoly price is 14, and the monopoly price is 15.

From equation (5) of Werden (1996), the Bertrand CMCR is 1
3
, meaning that if a merger results

in efficiencies that lower each merging firm’s costs by at least 1
3
, the monopolist’s prices will be

no greater than the duopolists prices.13 As expected, we see from expression (5) that were costs to

decrease by 1
3

following the merger, to ci = 20
3

, the monopolist would set prices of pi = 40
3

, equal to

the Bertrand duopoly prices.

From proposition 1 in section 3 of this paper, below, the Cournot CMCR is .2. From expression

(5), were costs to decrease by 20% following the merger, to ci = 8, the monopolist would set prices

pi = 14, identical to prices under Cournot competition. That the Cournot CMCR is lower than the

Bertrand CMCR is due to the fact that Cournot duopoly prices are greater than Bertrand duopoly

13To compute the Bertrand CMCR, note that margins are mi = .25 and diversion ratios are Dij = .5.
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Finally, while this example has sufficient detail to clearly illustrate the mechanics of CMCR, as a

general matter CMCR requires neither information about demand curvature nor knowledge of post-

merger equilibrium. Instead, CMCR requires only 1- knowledge of pre-merger prices, margins, and

diversion, and 2- a view as to mode of competiton (Bertrand or Cournot).

3 CMCR under differentiated Cournot competition

N separately-owned single-product firms produce differentiated goods. The firms compete by

simultaneously choosing quantities, with each firm then receiving the market clearing price for its

quantity. Each firm’s price depends on both its own quantity and its rivals’ quantities, according to

the inverse demand curve pi(Q), where Q is a vector with generic element qi. Assume that pi(Q) is

differentiable, with ∂pi
∂qj

< 0 for all i, j, so that products produced by the N firms are substitutes. Firm

i’s cost curve is given by ci(qi), with ci(qi) differentiable and with c′i > 0. Let mi =
pi−c′i(qi)

pi
denote

firm i’s margin over its cost on its last unit sold.

Firm i chooses qi so as to maximize its profits. Firm i’s first-order condition for profit-maximization

is:

mpre
i = −qi

pi

∂pi
∂qi

(6)

Now suppose that firms 1 and 2 merge. Each merging firm now chooses qi to maximize the sum

of firm 1’s and firm 2’s profits. Post-merger, firms 1 and 2 have the following first-order conditions:

mpost
i +

∂pj
∂qi

qj
pi

= −qi
pi

∂pi
∂qi

for i = 1, 2 (7)

where mpost
i denotes post-merger margin. In general, prices, quantities, and slopes differ before and

after a merger. For reasons that will become obvious, we suppress the superscript on all terms other

than margin.

If the merger between firms 1 and 2 lowers one or both of these firms’ marginal cost, this will

raise their margin, all else equal. Proposition 1 derives the amount by which each merging firm’s

margin would need to increase – and consequently, the amount by which its marginal cost would need

to decrease – in order for the merger not to result in a price increase. Following Werden (1996) and

Froeb and Werden (1998), I refer to this quantity as firm i’s compensating marginal cost reduction

(CMCR).

Proposition 1. Following a merger of firms 1 and 2, the amount by which each of the merging firms’

marginal costs must decrease so that post-merger quantities and prices are unchanged from pre-
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merger quantities and prices is:

CMCRi =

∂pj
∂qi
∂pj
∂qj

mj
pj
pi

1−mi

for i, j ∈ {1, 2} (8)

Proof. If the post-merger outcome matches the pre-merger outcome, it follows that all terms other

than margin are the same in both equations (6) and (7), for firms 1 and 2. The proof proceeds by

solving for the implied value of mpost
i , as a function of mpre

i .

Multiply the middle term in firm i’s post-merger first-order condition (7) by 1 =

∂pj
∂qj
∂pj
∂qj

pj
pj

. Then,

substitute firm j’s pre-merger first-order condition (6) into equation (7), to yield the following:

mpost
i = mpre

i +

∂pj
∂qi
∂pj
∂qj

mpre
j

pj
pi

for i = 1, 2, j 6= i (9)

Following equation (1) of Werden (1996), the relationship between the change in marginal cost

and the change in margin is:

cprei − c
post
i

cprei

=
mpost
i −mpre

i

1−mpre
i

(10)

Substituting the expression for mpost
i from (9) into (10) yields the expression for CMCRi. �

CMCR depends only on pre-merger values. The ratio of slopes,
∂pj
∂qi
∂pj
∂qj

, measures the closeness of

substitutability between goods 1 and 2. If the ratio is high, than an increase in j’s quantity qj affects

i’s price pi nearly as much as does an increase in i’s own quantity qi, so i and j are close substitutes.

On the other hand, if the ratio is small, than j’s price is much less affected by i’s quantity than by

j’s own quantity, and the products are more distant substitutes. The margins mj and mi are related

to the responsiveness of the merging firms’ demand to changes in price/quantity via the pre-merger

first-order conditions (6). From inspection of (6), a higher margin implies that the firm’s demand is

less responsive to changes in price or quantity.

In some cases, the demand slopes in the expression for CMCR, ∂pj
∂qi

and ∂pj
∂qj

, may be directly

measurable. This is most likely if price and quantity information spanning contraction and expansion

events is available. In other cases, directly estimating these demand slopes may prove difficult. The

following section provides an algorithm to calibrate demand slopes using pre-merger information on

margins and diversions ratios. The resulting demand slopes are sufficient both to calculate CMCR,

and to calibrate particular parameterized demand systems to pre-merger information, in order to sim-

ulate the merger price effect.
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4 Calibration and merger simulation

Researchers and antitrust practitioners often populate the parameters of a demand system using

either estimation – meaning econometric identification using variation in a dataset – or calibration –

meaning fitting parameters as closely as possible to a relatively small number of observed statistics,

commonly margins, diversion ratios,14 or cost pass through terms.15 As noted by Miller et al. (2012),

antitrust practitioners more commonly use calibration, as confidential information available through

subpoenas and discovery commonly suffice to measure diversion ratios and margins, but lack the

detail required for econometric identification.

In this section, I discuss what inferences can be made about demand slopes – meaning own and

cross price derivatives – from the margins and diversions ratios that are commonly available to an-

titrust practitioners. From proposition 1, these demand slopes suffice to calculate CMCR. I focus on

demand slopes, rather than assuming functional forms for demand and cost functions, to emphasize

both that CMCR is invariant to the curvature of the demand and cost functions and that the calibrated

slopes can be fit to a variety of demand and cost curves, depending on the application. For simplicity,

I focus on the case of an industry with N firms, for which all N margins and all (N2−N) diversions

are observable. This case may include industries consisting of publicly traded firms (who generally

report profit margins) and for which an assumption of diversion proportional to share is appropriate.

I proceed by adapting existing calibration techniques for fitting demand curves to market observ-

ables when competition is in prices. In this setting, calibration chooses own price coefficients so

that the margins implied by each firm’s first-order condition closely matches observed margins, while

choosing both own- and cross-price coefficients so as to match the implied diversion ratios to observed

diversion ratios as closely as possible, all while satisfying Slutsky symmetry. If all relevant margins

and diversion ratios are observed, calibration is generally overidentified, meaning that there is a trade-

off between more closely matching implied to observed margins, and more closely matching implied

to observed diversion ratios. This tradeoff arises because under Slutsky symmetry any vector of own

price coefficients implies multiple values of each cross-price coefficient; not only must a calibrated

cross-price coefficient match both of these values as closely as possible, but the calibrated own-price

coefficients affect the fit of implied to actual diversions, in addition to implying margins.

In setting of this paper, where competition is in quantities, calibration involves the same tradeoff

between margins and diversion ratios. Mode of competition determines each firm’s first-order condi-

tion, and thus the margin implied by a calibrated matrix of demand slopes. However, diversion ratios

14The diversion ratio from firm i to firm j is commonly defined by Dij = −
∂qj
∂pi
∂qi
∂pi

, and represents the share of firm i’s

marginal customers that would switch to firm j were firm i no longer an option.
15For a discussion of using observations on cost pass-through to calibrate demand, see Miller et al. (2012).
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are a property of the underlying demand system itself, and do not depend on whether competition is in

prices or quantities. Because diversion ratios are generally defined with respect to the direct demand

system Q(P ), I calibrate both a matrix of direct demand slopes ∂Q
∂P

and the corresponding matrix of

indirect demand slopes, ∂P
∂Q

=
(
∂Q
∂P

)−1
.16

Before describing the calibration algorithm, one addition to the model is needed. I have described

the N firms as a “market.” In any market, when customers switch from one firm, some customers

go to other firms in the market, a presumably smaller number of customers switch to firms out of the

market, and some customers may simply purchase less of the good in question. To capture this, I

assume out-of-market diversion equal to z ≥ 0. Depending on the application, z may be measured

econometrically, or may be proxied for. For example, in some matters comparatively little is known

about customer switching to manufacturers in China; in this case, Chinese manufacturers could be

classified as “out-of-market”, with out-of-market diversion proportional to a measure of the combined

shares of Chinese manufacturers.

4.1 Calibration of demand slopes

My calibration algorithm first chooses a vector of own price coefficients to populate the diagonal

of ∂Q
∂P

, the matrix of direct demand slopes. It then chooses off-diagonal elements of ∂Q
∂P

to match

implied diversions to observed diversion as closely as possible under Slutsky symmetry. It then inverts
∂Q
∂P

to obtain ∂P
∂Q

, the matrix of inverse demand slopes. Then, it calculates an error function increasing

in: 1- the squared distance between the diversion ratios as implied by ∂Q
∂P

and observed diversion

ratios, and 2- the squared distance between the margins implied by profit maximization and ∂P
∂Q

and

observed margins. Finally, the algorithm iterates over different choices of own price coefficients until

the error function is numerically minimized.

First, I fix notation. LetB denote anN×N matrix of calibrated price slopes with generic element

bij . To economize notation, all elements of B are positive, so that bii = − ∂qi
∂pi

and bij = ∂qi
∂pj

. Let β

denote the corresponding matrix of calibrated quantity slopes, so that β = B
−1

= ∂Q
∂P

, where B is

equal to B but with its diagonal elements replaced by −bii, so that B = ∂Q
∂P

. Let the generic elements

of B and β be denoted by bij and βij respectively.

Steps 1-6 below construct an error function for any choice of own price coefficients bii. Calibration

of demand slopes then proceeds by choosing {bii}Ni=1 so as to minimize this error function.

1. For a given choice of {bii}Ni=1, Slutsky symmetry and the definition of diversion (from footnote

16Slutsky symmetry implies that both ∂P
∂Q and ∂Q

∂P are symmetric matrices.
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14) imply:

bij = bji = Dijbii = Djibjj (11)

It is not generally possible for equation (11) to hold for all i, j. Indeed, a choice of bii implies

that bij = biiDij , while a choice of bjj implies bij = bji = bjjDji. Calculate bij to be the

weighted average of these two terms, with weights given by relative shares, so that:

b̂ij = b̂ji =

(
si

si + sj
biiDij +

sj
si + sj

bjjDji

)
(12)

2. A choice of {bii} and b̂ij imply a set of diversion ratios, D̂ij =
b̂ji
bii

. Scale the off-diagonal coeffi-

cients b̂ij so that min(
∑

j 6=1D1j,
∑

j 6=2D2j) ≤ (1−z). That is, bij = b̂ij∗min

{
b11(1−z)∑

j 6=1 b̂j1
, b22(1−z)∑

j 6=2 b̂j2
, 1

}
for all i, j, i 6= j.17

3. Using the initial choice of {bii}Ni=1 and the values of {bii}i 6=j implied by step 2, construct B

whose diagonal elements equal −bii and whose off-diagonal elements equal bij . Then, define

β = B
−1

.

4. For each firm i, a choice of bii implies a margin of m̃i = βii
qi
pi

for firm i. Assign weight

π ∗ wi to the squared difference between implied margin m̃i and the observed margin mi, with∑N
i=1wi = 1.

5. The choices of {bii} and {bij} imply values of diversion D̃ij =
bji
bii

. The implied D̃ij generate

N ∗ (N − 1) error terms between implied and observed diversion. Assign weight (1− π)ωij to

the squared difference between the implied D̃ij and the observed Dij , with
∑

i,j ωij = 1.

The choices of wi and ωij I use in my calibration are:

wi = si (13)

ωij =
sisj

1−
∑N

i=1 s
2
i

(14)

It is straightforward that
∑N

i=1wi =
∑N

i=1

∑
j 6=iwij = 1, as required. I have not found that

calibrated demand slopes to vary greatly in π, but in the calibrations discussed in section 5, I

set π = .99.
17Other choices of scalars for off-diagonal terms are defensible; the one given in the text is the most conservative, in

that it results in the lowest diversion ratios. An alternative is an average of the bii(1−z)∑
j 6=i b̂ji

terms over i = 1, 2.
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6. Define the error function ξ({bii}Ni=1) as follows:

ξ({bii}Ni=1) = π
N∑
i=1

wi(m̃i −mi)
2 + (1− π)

N∑
i=1

∑
j 6=i

ωij(D̃ij −Dij)
2 (15)

Given steps 1-6, calibration of demand slopes reduces to:

min
{bii}Ni=1

ξ({bii}Ni=1) (16)

In practice, I solve equation (16) numerically.18. Given a solution to equation (16) consisting of

{bii}Ni=1, define the matrix B via steps 1-2 above, and the matrix β by step 3.

Corollary 2 incorporates the calibrated matrix β into CMCR as defined in proposition 1. Its proof

is immediate.

Corollary 2. Given a set of calibrated demand derivatives B and β, the amount by which each of the

merging firms’ marginal costs must decrease so that post-merger quantities and prices are unchanged

from pre-merger quantities and prices is following a merger of firms 1 and 2 is:

CMCRi =
βji
βjj

mj
pj
pi

1−mi

for i, j ∈ {1, 2} (17)

4.2 Merger simulation

Industrial organization researchers and antitrust practitioners often wish to calculate the counter-

factual effect of some event, such as a merger. Doing so generally requires a fully-specified demand

system and set of cost curves, and the counterfactual effect will generally depend on assumptions

made about the form and curvature of these functions (unlike CMCR, which is invariant to the cur-

vature of the underlying demand system and cost curves). Hence, this section moves beyond the

demand-agnostic calibration of slopes discussed in the previous section to additionally calibrate de-

mand intercept terms.

Merger simulation as applied by researchers and antitrust practitioners involves resolving profit

maximization problems for the merging firms given calibrated or estimated demand and cost curves,

and determining the implied merger price effect. While merger simulation requires much stronger

assumptions than does CMCR, it also produces more granular, and thus potentially more useful,

information. Specifically, while CMCR gives the cost reduction for each merging firm that would

result in no price increase, it it silent on the amount of any price change should expected merger

18Matlab code solves the minimization problem in equation (16), given user-inputted values for margins, diversions,

out-of-market diversion, and weight π
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efficiencies not precisely equal CMCR. Second, CMCR can produce an ambiguous answer when

applied to a specific merger; suppose that CMCR1 = 7%, while CMCR2 = 3%, and both merging

firms are expected to reduce their marginal costs by 5%. In this case, CMCR is insufficient to evaluate

even the sign of the merger’s total effect on price.

I discuss parameterizing both linear (section 4.2.1) and loglinear (section 4.2.2) demand curves

from the matrix of demand slopes β calibrated from pre-merger observables in section 4.1. Section

4.2.3 discusses parameterizations of other demand systems.

4.2.1 Linear demand

First, assume that demand is linear, so that the derivative matrices B and β describe the slope of

demand for any values of P and Q, not just those prevailing pre-merger. While merger simulation

admits a myriad of potential assumptions on cost curves, for simplicity assume that each firm’s cost

curve is either linear (ci(qi) = ci ∗ qi) or quadratic (ci(qi) = γi
2
q2i , with γi calibrated to match firm i’s

observed pre-merger margin mi).

All firms’ pre-merger first-order condition are given by equation (6) in section 3. Determine

calibrated matrix β using the algorithm in section 4.1. Then, should firms 1 and 2 merge these firms

would have the following first-order conditions:

αi − 2βiiqi − γiqi − 2βijqj −
N∑
k=3

βikqk = 0 i, j ∈ {1, 2} (if firm i has quadratic cost)

αi − 2βiiqi − ci − 2βijqj −
N∑
k=3

βikqk = 0 i, j ∈ {1, 2} (if firm i has constant marginal cost)

The non-merging firms have the following first-order conditions:

αi − 2βiiqi − ci −
N∑
k 6=i

βikqk = 0 i, j ∈ {1, 2} (if firm i has constant marginal cost)

αi − 2βiiqi − γiqi −
N∑
k 6=i

βikqk = 0 i, j ∈ {1, 2} (if firm i has quadratic cost)

If all firms have quadratic costs, the conditions for firms 3, ..., N are adjusted accordingly.

Merger simulation solves the system of first-order conditions, and compares the resulting prices

and quantities to observed pre-merger prices and quantities.19

19I first compute pre-merger equilibrium prices and quantities implied by calibrated demand, which may slightly differ

from observed prices and quantities. I then use these implied pre-merger equilibrium values as the baseline, so that any

imprecision in calibration applies equally to pre- and post-merger prices and quantities, isolating the effect of the merger.
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4.2.2 Loglinear demand

Now assume that demand is loglinear, so that the direct demand curve is given by:

log(qi) = γi +
N∑
j=1

εij log(pj) (18)

where εij = ∂qi
∂pj

pj
qi

is the own elasticity of demand.

Equation (18) can be inverted to produce inverse demand, as follows:

log(pi) = ηi −
N∑
j=1

σij log(qj) (19)

It is direct that σij =
∂ log(pi)
∂ log(qj)

= ∂pi
∂qj

qj
pi

. Under the calibration discussed in section 4.1, ∂pi
∂qj

= βij .

Therefore, the vector η and the matrix σ are calibrated from demand slopes β as follows:

σij = βij
qj
pi

(20)

η = log(P ) + σ ∗ log(Q) (21)

Under separate ownership, each of N firms simultaneously chooses quantity qi in order to maxi-

mize profits given rivals’ quantity choices. A pre-merger Nash equilibrium satisfies:

pi =
MCi
1− σi

for i = 1, ..., N

⇒
N∑
j=1

σij log(qj) = ηi − log(MCi) + log(1− σci ) for i = 1, ..., N

⇒Q = eσ
−1K (22)

Equation (22) provides a closed form solution for the pre-merger equilibrium in quantities. By

design, the quantities implied by equation (22) closely match observed quantities.

Following a merger of firms 1 and 2, each merging firm internalizes the effect of its quantity

choice on the profits of the other. The resulting post-merger first order conditions are:

eθ1(1− σ11)− eθ2σ21
q2
q1
− c1 = 0 (23)

eθ2(1− σ22)− eθ1σ12
q1
q2
− c2 = 0 (24)

eθj(1− σjj)− cj = 0 for j = 3, ..., N (25)

where θi = γi −
∑N

j=1 σij log(qj), so that eθi = pi equals firm i’s price, as a function of logged

quantities. This system of first-order conditions in (23)-(25) is solved numerically for qi, i = 1, ..., N .

As with linear demand, the solution to system (23)-(25) is compared to the pre-merger solution (22),

with the difference (both in quantities and in associated prices) taken to be the effect of the merger.
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4.2.3 Other demand systems

The algorithm I describe in section 4 calibrates the slopes of both the direct and inverse demand

curves at the pre-merger equilibria. Various assumptions on direct demand curves are used by re-

searchers and practitioners modeling competition in prices, with merger simulation results depending

on the assumed form of demand. I chose the linear and loglinear systems as exemplars because of

their relative tractability, and because the linear model in particular is commonly used in the industrial

organization literature and by antitrust practitioners.20 However, any direct demand system that is in-

vertible in a large enough neighborhood of the pre-merger equilibrium and which can be calibrated

from direct and/or inverse demand slopes can be used to model competition in quantities with differ-

entiated goods. Okuguchi (1987) discusses assumptions on the direct demand system necessary for it

to be invertible, and for comparisons between Bertrand and Cournot outcomes to be well-founded.

5 Applications

In this section, I consider a hypothetical industry – consisting of five differentiated firms with

“observed” margins and shares given in table 1 – and discuss applying the differentiated Cournot

version of CMCR, calibrating demand slopes, and merger simulation. I do so through a series of

brief examples that illustrate the relative advantages of the differentiated Cournot model over the

“standard” homogeneous Cournot model – including the ability to flexibly match observed margins

that are not proportionate to shares, and the relative profitability of differentiated Cournot mergers. I

also contrast the differentiated Cournot model to the oft-used Bertrand and homogeneous Cournout

models to situations where differentiated firms compete in quantities. For the sake of tractability, I

assume that diversion is proportion to share, with 10% out of market diversion, and I use weighting

parameter π = .99 in calibrating demand slopes.

5.1 Flexibility in matching observed margins

As discussed in section 1, the “standard” homogeneous Cournot model predicts that each firm’s

market share is linearly related to its profit margin, via its first order condition mi = − si
εii

, where si is

firm i’s share, and εii its own price elasticity of demand. In practice, observed margins rarely obey the

homogeneous Cournot model’s prescription, and this incongruence is sometimes used to attack the

validity of the Cournot model.21 Unlike the homogeneous Cournot model, the differentiated Cournot
20Papers modeling competition in quantities with differentiated goods include: Alipranti, Millou, and Petrakis (2014);

Davis (2002), Häckner (2000), Qiu (1997), Singh and Vives (1984), Okuguchi (1987), and Vives (1984).
21See footnotes 8 and 9, supra, and surrounding discussion.
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Firm Market share Margin

1 24.0% 32.0%

2 18.0% 13.0%

3 36.0% 30.0%

4 16.0% 27.0%

5 6.0% 20.0%

Table 1: Observed margins and market shares for a hypothetical industry, used throughout section 5.

model is consistent with any relationship between share and margin, as it allows the various firms to

have distinct own-price elasticities.

Given the shares and margins in table 1, I calibrate demand slopes using the algorithm described

in section 4.1 to be:

β =
∂P

∂Q
=



0.0133 0.0046 0.0059 0.0068 0.0070

0.0046 0.0073 0.0040 0.0047 0.0050

0.0059 0.0040 0.0083 0.0061 0.0063

0.0068 0.0047 0.0061 0.0169 0.0071

0.0070 0.0050 0.0063 0.0071 0.0332


(26)

I calculate the margins implied by the demand slopes, m̃i = βii
qi
pi

, using step 4 of section 4.1.

Table 2 displayes these implied margins, along with “observed” margins from table 1. The rightmost

column of table 2 displays margins implied by alternatively calibrating the observables in table 1 to

a homogeneous demand system.22 By inspection of table 2, while differentiated Cournot calibration

can flexibly match observed margins, homogeneous Cournot calibration implies margins that are quite

different from those observed. The reason is that homogeneous Cournot calibration chooses one

parameter – market elasticity of demand – to match a weighted average of observed margins, whereas

differentiated Cournot calibration allows each firm to have different own elasticities.
22To calibrate a market demand curve under the assumption of homogeneous Cournot competition, I calibrate the

market elasticity of demand ε that most closely matches the observed margins and shares from table 1. Specifically, I

choose the value of elasticity ε that minimizes the sum of squared errors between implied and observed margins, weighted

by share, or:

ε∗ = argminε

N∑
i=1

si

(si
ε
−mi

)2
(27)

Then, each firm’s implied margin – as reported in table 2 – is mi =
si
ε∗ .
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Observables Implied margins

Firm Market share Margin Diff. Cournot Homog. Cournot

1 24.0% 32.0% 31.9% 23.5%

2 18.0% 13.0% 13.2% 17.6%

3 36.0% 30.0% 30.0% 35.3%

4 16.0% 27.0% 27.0% 15.7%

5 6.0% 20.0% 19.9% 5.9%

Table 2: Observed margins and those implied by calibrating observables to a differentiated Cournot

model and a homogeneous Cournot model, respectively.

5.2 Merger profitability

Section 1 discussed literature documenting the apparent unprofitability of mergers implied by

the “standard” homogeneous Cournot model, as well as litigated matters in whcih the purported un-

profitability of Cournot mergers undermined the credibility of the homogeneous Cournot model.23

Because the products are more distant substitutes in the differentiated Cournot model, a reduction

in the merging firms’ output creates less of an incentive for nonmerging firms to expand production

than would be the case were the various firms’ products perfect substitutes. Because the expansion of

output by nonmerging firms necessarily lowers the profit of the merging firms, differentiated Cournot

mergers are thus relatively more profitable than homogeneous Cournot mergers.

To illustrate the relative profitability of a merger of differentiated Cournot competitors, I first fit

linear demand curves to the demand slopes described by equation (26). Then, I fit a market demand

curve to the homogeneous Cournot market elasticity described in footnote 22. I apply section 4.2.1 to

calculate the merger price effects from a merger of firms 1 and 2 under differentiated Cournot, with

a corresponding calculation for homogeneous Cournot. Finally, I calculate the profitability of the

merger to the merging firms, πpost1,2 − (πpre1 + πpre2 ), for both differentiated and homogeneous Cournot.

Results are shown in table 3, for each of three different assumptions on the curvature of cost curves

(all firms have linear costs, merging firms have quadratic costs while nonmerging firms have linear

costs, and all firms have quadratic costs).24 From table 3, a merger under a homogeneous Cournot de-

mand system is considerably more unprofitable than a merger under a differentiated Cournot demand

23See footnote 10, and surrounding text.
24Linear cost curves have form ci(q) = kiqi, quadratic curves have form ci(qi) =

γi
2 q

2
i . I omit the case of homogeneous

Cournot competitors with linear costs from table 3, because the homogeneous Cournot model does not admit a post-merger

equilibrium in which both merging firms continue to exist (see Salant, Switzer, and Reynolds, 1983).
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Differentiated Cournot Homogeneous Cournot

Linear demand Linear demand

Firm Linear costs Merging quadratic Quadratic costs Merging quadratic Quadratic costs

1 3.1% 1.8% 2.1% 1.6% 3.7%

2 4.9% 1.3% 1.5% 1.6% 3.7%

3 1.5% 0.6% 1.0% 1.6% 3.7%

4 1.5% 0.6% 1.1% 1.6% 3.7%

5 1.5% 0.6% 1.1% 1.6% 3.7%

-1.8% -0.5% 0.0% -4.7% -0.8%

Profitability of merger to merging firms

Table 3: Simulated price increases (blue rows) and merger profitability (peach rows) following a

merger of firms 1 and 2, for demand calibrated to a differentiated Cournot linear demand system or a

homogeneous Cournot linear demand system.

system. It follows that a lower magnitude of merger efficiencies would “rationalize” the merger under

a differentiated Cournot competition.

5.3 Efficiencies

Application of corollary 2 to the calibrated demand slopes in equation (26) provides values of

CMCR under differentiated Cournot. Table 4 reports these, and corresponding values of CMCR

obtained by calibrating a homogeneous Cournot demand system using equation (27) and applying

Froeb and Werden (1998). In this section’s example, much lower efficiencies are needed to offset

merger price effects when products are differentiated.

Next, I reconsider the merger simulations of section 5.2 for various potential values of merger cost

savings realized by the two merging firms, with an additional case of loglinear demand. Table 5 lists

price increases resulting from a merger of firms 1 and 2 for cost savings of 2%, 6%, and the values of

CMCR for both differentiated and homogeneous Cournot demand from table 4. The table also lists

the profitability of the merger to the merging firms under each scenario.

While modest cost savings below CMCR render a merger profitable under differentiated Cournot

demand, considerably greater costs savings are required for profitability of a comparable merger un-

der homogeneous Cournot competition. Cost savings equal to CMCR result in zero price increase

regardless of demand or cost curvature,25 for both differentiated and homogeneous Cournot.
25The exception is the small price change predicted under loglinear demand and differentiated Cournot competition,
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Differentiated Cournot Homogeneous Cournot

Firm CMCR CMCR

1 12.02% 25.49%

2 12.72% 25.49%

Table 4: CMCR under both differentiated and homogeneous Cournot competition.

5.4 Comparison to Bertrand models

As summarized in section 1, a literature starting roughly with Singh and Vives (1984) compares

outcomes under differentiated Bertrand and Cournot competition, generally finding that Cournot com-

petition is more monopolistic than Bertrand competition. To my knowledge, the literature has not

studied whether this intuition extends to merger price effects. That is, if Cournot outcomes are more

monopolistic than Bertrand outcomes, should we expect larger merger price effects under Cournot or

Bertrand competition?

This question is complicated by the fact that mode of competition is, itself, determinative of

calibrated demand. While Singh and Vives (1984) and other papers generally compare Cournot and

Bertrand outcomes for the same demand curve, practitioners often start with a set of observables

and fit demand to those observables using the various firms’ optimality conditions. Since optimality

conditions depend on the mode of competition, the same observables produce different demand curves

depending on whether competition is thought to be Bertrand or Cournot. Thus, the question I ask here

is: for a set of observables, does the demand curve implied by Cournot competition imply greater or

lesser merger effects than that implied by Bertrand competition?

For the industry described in table 1, I additionally calibrate a Bertrand demand system, simulate

merger outcomes under that system, and simulate merger price effects .26 Table 6 contains the results.

For each type of assumed demand and cost curvature, the calibrated Cournot model predicts a greater

merger price effect than does the calibrated Bertrand model.

As a general matter, Cournot merger price effects may be larger or smaller than Bertrand merger

price effects. Consider the special case of two identical (or nearly identical) firms producing homoge-

which appears to result from a slight imprecision in the numerical algorithm I use for solving the post-merger equilibrium

and the sensitivity of loglinear demand to small changes.
26The Bertrand calibration is identical to the Cournot calibration described in section 4.1, but substitutes the Bertrand

first order condition m̃Bertrand
i = − 1

∂qi
∂pi

qi
pi

for than the Cournot condition m̃Cournot
i = ∂pi

∂qi

qi
pi

. Direct demand coefficients

bij are chosen to solve the minimization problem in equation (15), with m̃Bertrand
i replacing the corresponding Cournot

value. Standard techniques allow computation of Bertrand merger price effects, for a variety of cost curves.
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Differentiated Cournot Homogeneous Cournot

Linear demand Loglinear demand Linear demand

Firm Cost savings Linear costs Merging quadratic Quadratic costs Linear costs Merging quadratic Quadratic costs

1 2% 2.6% 1.53% 1.77% 23.26% 1.53% 3.43%

2 2% 4.09% 1.11% 1.29% 6.18% 1.53% 3.43%

Merger profitability 4.18% 0.76% 1.19% -22.81% -3.32% 0.35%

1 6% 1.56% 0.95% 1.1% 13.88% 1.3% 2.92%

2 6% 2.57% 0.71% 0.82% 2.91% 1.3% 2.92%

Merger profitability 16.87% 3.29% 3.57% -2.53% -0.46% 2.75%

1 12.02% 0.0% 0.0% 0.0% 0.34% 0.93% 2.07%

2 12.72% 0.0% 0.0% 0.0% -0.18% 0.93% 2.07%

Merger profitability 39.29% 7.58% 7.59% 38.80% 4.38% 6.76%

1 25.49% -3.52% -2.26% -2.6% -19.25% 0.0% 0.0%

2 25.49% -4.85% -1.61% -1.86% -6.84% 0.0% 0.0%

Merger profitability 94.17% 17.76% 17.03% 75.30% -4.7% -0.8%

Table 5: Simulated price effects (blue rows) and merger profitability (peach rows) for firms 1 and 2,

for various values of merger cost savings realized by the merging firms.

neous (or nearly homogeneous) goods. When separately owned, if the firms compete in price, the text-

book Bertrand model predicts they will price at cost (or nearly at cost). In contrast, Cournot duopolists

producing identical goods earn a markup above cost, such that each firm has margin mi =
si
ε

, where

ε is the market elasticity of demand. Following a merger, a monopolist will set price and quantity

independently of whether pre-merger competition was Cournot or Bertrand. Since price was lower

under the calibrated Bertrand demand system, it follows that the merger price effect is larger under

Bertrand competition than under Cournot competition. A more general assessment of Bertrand and

Cournot merger price effects is left for future research.

5.5 Capacity constraints

A small literature, notably including Froeb, Tschantz, and Crooke (1999) and Greenfield and

Sandford (2021), argues that merger price effects are likely to be attenuated should one or both merg-

ing firms be capacity-constrained prior to merging, and likely to be amplified should one or more

nonmerging firms be capacity-constrained. The literature further suggests that capacity constraints on

merging firms are more important determinants of merger price effects than are capacity constraints

on non-merging firms. These papers generally consider differentiated Bertrand models.

I extend these papers to differentiated Cournot competition by examining results in tables 3 and 5.

As Greenfield and Sandford (2021) discuss, any capacity constraint can be thought of as an increasing
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Differentiated Bertrand Differentiated Cournot

Linear demand Loglinear demand Linear demand Loglinear demand

Firm Linear costs Quadratic costs Linear costs Linear costs Quadratic costs Linear costs

1 2.8% 1.7% 7.9% 3.1% 2.1% 28.5%

2 3.0% 1.1% 6.8% 4.9% 1.5% 7.7%

3 0.9% 0.7% 0.0% 1.5% 1.0% 0.0%

4 0.8% 0.7% 0.0% 1.5% 1.1% 0.0%

5 0.7% 0.9% 0.0% 1.5% 1.1% 0.0%

Table 6: Cournot calibration predicts a greater merger price increase than Bertrand calibration for

each assumed demand and cost structure.

marginal cost function. Thus, the effects of capacity constraints on merger price effects can be seen

by comparing merger effects under quadratic costs (constrained) to those under linear costs (uncon-

strained). Tables 3 and 5 suggest that results on the effect of capacity constraints on merger price

effects extend to differentiated Cournot competition. For example, in table 3, merging firms raise

price by 3.1% and 4.9% if all firms are unconstrained (linear costs); by 1.5% and 1.1% if merging

firms (but not nonmerging firms) are constrained; and by 1.8% and 1.3% if all firms are constrained.

6 Conclusion

The differentiated Cournot model seems to have fallen out of favor with academic researchers,

and seems to have never caught on at all with antitrust practitioners. Indeed, the latter group appear

to default to competition in prices when products are differentiated, and seem to apply the Cournot

model only when goods are thought to be reasonably homogeneous. This lack of interest in the differ-

entiated Cournot model is unfortunate; as discussed in the introduction, both the academic literature

and antitrust practitioners view competition in quantity as an important phenomenon, given the preva-

lence of academic papers and antitrust litigation premised on the (homogeneous) Cournot model. I

do not see a theoretical basis for presuming that competition in quantities ceases to be important once

products are differentiated.

Moreover, the homogeneous Cournot model is, by design, inflexible. It assumes that all products

are interchangeable, which implies that each firm’s profit margin is proportional to its market share; in

practice, observed shares rarely follow this dictum. The homogeneous Cournot model’s assumption

of interchangeability of the different goods implies that nonmerging firms are incentivized to increase

production following a merger, suggesting that these nonmerging firms may realize the bulk of the
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benefits of a merger, and indeed merging firms may have greater total profits when separately owned.

Finally, the assumption of interchangeability itself is often empirically suspect, as even commodity

products are commonly differentiated by branding, idiosyncratic customer preferences, distance from

customer locations to manufacturing plant, and minor differences in quality. Each of these inflexibil-

ities opens the Cournot model to attack when used in academic studies or in antitrust litigation.

The differentiated Cournot model circumvents each of the listed inflexibilities associated with the

homogeneous Cournot model, while preserving the (presumably important) setting in which firms

compete by choosing quantities, with prices set so as to equate each firm’s demand and supply. Per-

haps the differentiated Cournot model has fallen into disuse because of technical difficulties associated

with applying it to industrial organization and antitrust settings. If so, hopefully this paper will give

the differentiated Cournot model new life. As described above, I derive a CMCR metric depending

only on pre-merger margins, prices, and demand slopes, and which is invariant to assumptions on

demand and cost curvature. I show that if the required demand slopes cannot be measured economet-

rically, they can be calibrated from pre-merger information on shares and diversions, again without

relying on assumptions about demand and cost curvature. Finally, should a researcher or practitioner

wish to model merger price effects or other counterfactuals, she can use the calibrated demand slopes

to populate the parameters of a system of demand and cost curves.
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